0=-16x^2+1053

Simple and best practice solution for 0=-16x^2+1053 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2+1053 equation:



0=-16x^2+1053
We move all terms to the left:
0-(-16x^2+1053)=0
We add all the numbers together, and all the variables
-(-16x^2+1053)=0
We get rid of parentheses
16x^2-1053=0
a = 16; b = 0; c = -1053;
Δ = b2-4ac
Δ = 02-4·16·(-1053)
Δ = 67392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{67392}=\sqrt{5184*13}=\sqrt{5184}*\sqrt{13}=72\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72\sqrt{13}}{2*16}=\frac{0-72\sqrt{13}}{32} =-\frac{72\sqrt{13}}{32} =-\frac{9\sqrt{13}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72\sqrt{13}}{2*16}=\frac{0+72\sqrt{13}}{32} =\frac{72\sqrt{13}}{32} =\frac{9\sqrt{13}}{4} $

See similar equations:

| 87c+9-16+3=124.50 | | 7/4=4m/3-1/9 | | 4q+30-14/5=4 | | 8m+3(1/3m-6)=9m+2m+12 | | 6+-9x=-5x+14 | | 44-2x=36 | | 3x-2(-4x-14)=127 | | -(3k+4)+4k=-(k-6) | | 6y-y2;y=3 | | 2s-3s=20s= | | 30s=198 | | -6y-90=-3y+6 | | b=5/16+3/16 | | 24s=198 | | 3s-30=33 | | 3−5x=6−6x | | 7b+4=46 | | -3x+6=-9x= | | 5(x+1)=12x-17-7x | | 15+2r=60 | | A.x=9 | | n-29=23 | | 5n-17=-38 | | -16+0.6x+6=4 | | 5-x=5x-14 | | 2.5x-0.5=1.5x+0.2 | | -6p-21=3p-12p= | | 10x–5/2=25 | | 8(y-1)-3y=6y(2y-6) | | 5k-7+3=-24 | | 7f=8f-4 | | 3.5(5-t)=4.8t |

Equations solver categories